Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets


Autores: Sirirerkratana, K. et Al

Dye pollutants from textile industries are a major wastewater problem because they have complex chemical structures. Photocatalysis is a promising wastewater treatment method, which is used to remove dyes under light irradiation in the presence of a photocatalyst. In this article, titanium dioxide (TiO 2 ) photocatalyst was synthesized through sol-gel technique and coated on different substrates (i.e. transparent glass, glazed ceramic tile, and stainless steel) by doctor blade technique. The coated substrates were used in an innovative reactor to remove colors in dye wastewater. The photocatalytic activities of the designed reactor were determined using a synthetic dye wastewater (methylene blue) under UV irradiations (36W-UVA or 30W-UVC lamps). The results showed that the optimum substrate yielded the highest color removal efficiency (93.03 ± 0.66%) was TiO 2 -coated glass under UVC irradiation. The recycling ability of TiO 2 -coated glass sheet was also evaluated. It was found that TiO 2 -coated glass sheet provided the same efficiencies for 20 cycles. In addition, the actual wastewater from textile industry was tested in this study with different pH values (i.e. pH = 3–11). The maximum color removal obtained was 87.86 ± 0.23% at pH value 11 on TiO 2 -coated glass under UVC irradiation. The color removal was found to decrease with decreasing pH.

Si desea más información póngase en contacto con el Centro de Documentación

Comments are closed.

ITC © 2011  |  T.+34 964342424  |   F.+34 964342425  |  |   Av. Vicente Sos Baynat s/n, 12006, Castellón de la Plana, Spain  |   Aviso legal  |   Protección de datos  |   Accesibilidad