Broadband anti-reflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cellsBroadband anti-reflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cells

27/05/2013

Authors: Xiaoyu Lia, Junhui Hea, Weiyi Liuc

Source: Materials Research Bulletin.48(2),2522–2528

High performance broadband antireflective (AR) and water-repellent coatings were fabricated on glass substrates by assembly of silica nanoparticles and polyelectrolytes via the layer-by-layer (LbL) assembly technique, followed by calcination and hydrophobic modification. A porous poly(diallyladimethylammonium chloride) (PDDA)/20 nm SiO2 nanoparticles (S-20) multilayer coating with AR property was prepared first. The maximum transmittance is as high as 99.0%, while that of the glass substrate is only 91.3%. After calcination and hydrophobic modification, the coating became water-repellent while maintaining the good AR property. Such water-repellent AR coatings can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. Scanning electron microscopy (SEM) was used to observe the morphology and thickness of coatings. Transmission spectra and reflection spectra were characterized by UV–vis spectrophotometer. The surface wettability was studied by a contact angle/interface system.

Si desea obtener más información sobre este contenido contacte con nuestro Centro de DocumentaciónAutores: Xiaoyu Lia, Junhui Hea, Weiyi Liuc

Fuente: Materials Research Bulletin.48(2),2522–2528

High performance broadband antireflective (AR) and water-repellent coatings were fabricated on glass substrates by assembly of silica nanoparticles and polyelectrolytes via the layer-by-layer (LbL) assembly technique, followed by calcination and hydrophobic modification. A porous poly(diallyladimethylammonium chloride) (PDDA)/20 nm SiO2 nanoparticles (S-20) multilayer coating with AR property was prepared first. The maximum transmittance is as high as 99.0%, while that of the glass substrate is only 91.3%. After calcination and hydrophobic modification, the coating became water-repellent while maintaining the good AR property. Such water-repellent AR coatings can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. Scanning electron microscopy (SEM) was used to observe the morphology and thickness of coatings. Transmission spectra and reflection spectra were characterized by UV–vis spectrophotometer. The surface wettability was studied by a contact angle/interface system.

Si desea obtener más información sobre este contenido contacte con nuestro Centro de Documentación

Comments are closed.



ITC © 2011  |  T.+34 964342424  |   F.+34 964342425  |   info@itc.uji.es  |   Av. Vicente Sos Baynat s/n, 12006, Castellón de la Plana, Spain  |   Aviso legal  |   Protección de datos  |   Accesibilidad